\qquad
\qquad
I. Rotation vs. Revolution
a. Rotation is when an object turns about an \qquad axis. Example:
b. Revolution is when an object turns about an \qquad axis. Example:
II. Tangential vs. Rotational Speed
a. The \qquad speed is when the object is moving along a circular path. It is \qquad angles to the radius. The direction of motion is always \qquad to the circle.
b. A point on the outer edge moves a \qquad distance than a point at the center so the tangential speed is \qquad on the outer edge than closer to the axis. $\mathrm{V}_{\mathrm{t}}=$ \qquad Unit: \qquad
c. The \qquad speed is the number of \qquad per unit of time. All parts of the object rotate about their axis in the \qquad amount of time. Expressed in \qquad which stands for revolutions per \qquad . Other example units would be:
III. Centripetal Force/Acceleration \& Centrifugal Force
a. The \qquad force is any force that causes an object to follow a circular path. It pulls an object out of its straight-line path and into a \qquad path. This \qquad force is directed at
\qquad angles to the path of a moving object. $\mathrm{F}_{\mathrm{c}}=$ \qquad Unit: \qquad
b. \qquad acceleration measures how quickly the direction of velocity changes. It can be compared to $9.8 \mathrm{~m} / \mathrm{s}^{2}$ or 1 \qquad . $\mathrm{A}_{\mathrm{c}}=$ \qquad Unit: \qquad
c. The \qquad force is fictitious force. It is actually your own \qquad pressing against the outside of the circle.
IV. Center of Gravity is the point located at the object's \qquad position of weight.
a. An object will remain \qquad if the CG is above its base support or supported at that point.
b. A block topples when the \qquad extends beyond its support base.
c. A projectile rotates about its \qquad -.
V. Torque - produces \qquad . When a force is applied with " \qquad $"$
a. \quad Torque $=$ \qquad X \qquad Unit: \qquad
b. When the force is perpendicular, the distance from the turning axis to the point of contact is called the \qquad —.
c. The greater the force or lever arm the greater the \qquad _.
d. A pair of torques can \qquad each other. $(\mathrm{Fd})_{\mathrm{ccw}}=(\mathrm{Fd})_{\mathrm{cw}}$
Example: A 60 kg boy sits on a seesaw 1.0 m from the fulcrum. What is the distance from the fulcrum should the 30 kg girl sit in order to balance the seesaw?

VI. Rotational Inertia

a. Linear inertia (Newton's first law): An object at rest tends to stay at \qquad , and an object in motion tends to remain \qquad in a straight line.
b. Rotational inertia: An object rotating about an axis tends to keep \qquad about that axis, while nonrotating object tends to stay \qquad -
c. Just as it takes a force to change linear state of motion, a \qquad is required to change the rotational state of motion of an object.

1. The greater mass on an object, the \qquad the rotational inertia.
2. With rotation on an object, the greater the distance between the axis and the bulk of the mass, the \qquad rotational inertia.
3. A solid cylinder rolls down an incline \qquad than a hollow one, of the same mass and diameter.
4. A hollow cylinder has \qquad rotational inertia and the mass will be more "_ " in gaining speed. So, its acceleration will be \qquad _.
d. Rotational Inertia and Gymnastics
5. Extending an arm or leg \qquad rotational inertia. (ice skaters)
6. The rotational inertia is \qquad when arms and legs are drawn inward in the tuck position. (somersault or flip)
VII. Angular Momentum = \qquad x \qquad x \qquad Unit: \qquad
a. The greater the tangential velocity, \qquad its angular momentum.
b. Law of conservation of momentum - if no unbalanced external torque acts on a rotating system, the angular momentum of the system is \qquad .

Example: When a person pulls his/her arms and the whirling weights inward, he/she
\qquad their radius, and their tangential speed correspondingly \qquad while
\qquad angular momentum.

